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The convergence behavior of symmetry-adapted perturbation theory (SAPT) expansions is
investigated for an interacting system involving an excited, open-shell monomer. By per-
forming large-order numerical calculations for the interaction of the lowest, 1s2s, triplet
state of helium with the ground state of the hydrogen atom we show that the conventional
polarization and symmetrized Rayleigh–Schrödinger expansions diverge in this case. This di-
vergence is attributed to the continuum of intruder states appearing when the hydrogen
electron is falling on the helium 1s orbital and the 2s electron is ejected from the interact-
ing system. One of the dimer states resulting from the interaction becomes then a reso-
nance, which presents a hard case to treat by a perturbation theory. We show that the SAPT
expansions employing the strong symmetry-forcing procedure, such as the Eisenschitz–London–
Hirschfelder–van der Avoird or the Amos–Musher theories, can cope with this situation and
lead to convergent series when the permutational symmetry of the bound, quartet state is
forced. However, these theories suffer from a wrong asymptotic behavior of the second- and
higher-order energies when the interatomic distance R grows to infinity, which makes them
unsuitable for practical applications. We show that by a suitable regularization of the Cou-
lomb potential and by treating differently the regular, long-range and the singular,
short-range parts of the interatomic electron-nucleus attraction terms in the Hamiltonian
one obtains a perturbation expansion which has the correct asymptotic behavior in each or-
der and which converges fast for a wide range of interatomic distances.
Keywords: Weak interactions; Hamiltonian; Schrödinger equation; FCI calculations;
Amos–Musher theory; Quantum chemistry.

Quantitative information about weak interatomic and intermolecular inter-
actions is indispensable for a proper understanding and interpretation of a
vast area of phenomena in molecular physics, physical chemistry, and bio-
chemistry1. The progress in these disciplines depends, thus, to a large ex-
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tent on our ability to reliably predict the energies of intermolecular interac-
tions. Two general theoretical approaches are available to make such pre-
dictions: the supermolecular method2–4, in which the interaction energy is
obtained as the difference between the energy of the dimer (supermolecule)
and the sum of monomer energies, and the perturbation approach5–7 pro-
viding the interaction energy directly as a sum of perturbation corrections
of increasing order with respect to the operator V responsible for the
intermolecular interaction phenomenon. Both approaches have their mer-
its and problems8,9. The attractive features of the supermolecular method
are its conceptual simplicity, universality, and possibility of a systematic
improvement of the results by employing increasingly advanced levels of
the electronic structure theory, see, e.g., refs10,11. The supermolecular calcu-
lations have to rely, however, on a fortunate cancellation of large absolute
errors (which does not always take place12) and encounter problems when
the employed electronic structure method is not size-consistent13 and/or
when the elimination of the basis set superposition error3 (BSSE) is not
straightforward4. The main advantages of the perturbation theory approach
are its high accuracy at large intermolecular separations, clear physical in-
terpretation of the individual energy corrections, and well understood rela-
tion between these corrections and the monomer properties14, which often
enables an easy and qualitatively correct determination of the optimal
structure of intermolecular complexes, see, e.g., refs15–17. The drawbacks of
the perturbation theory are its complex formal structure18 and the potential
loss of accuracy at smaller intermolecular distances, when the neglected
higher-order corrections must become important19–23. It should be noted
that there exist intimate relations between the supermolecular and pertur-
bation methods2,24 and one may argue that only a simultaneous applica-
tion of both approaches can give a complete picture of the intermolecular
interaction phenomenon.

It has been known for a long time25,26 that the conventional Rayleigh–
Schrödinger (RS) perturbation theory (referred to as the polarization expan-
sion in the present context) employing the sum of the monomer
Hamiltonians HA and HB as an unperturbed operator H0 and the inter-
molecular interaction operator V as a perturbation is inadequate since it is
not able to predict the very existence of the exchange contribution to the
interaction energy. Many alternative perturbation schemes have been pro-
posed in the literature to cope with this difficulty. The formal structure of
these schemes, referred to as the symmetry-adapted perturbation theory (SAPT)
expansions, has been discussed in some detail in refs5,8,9,27. One of the sim-
plest SAPT formulations, the so-called symmetrized Rayleigh–Schrödinger
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(SRS) expansion28, has turned out to give good accuracy already through
second order and has been implemented in a general utility computer pro-
gram29 applicable to interactions of closed-shell monomers.

Despite its numerous successful applications7, the SRS version of SAPT
cannot be viewed as entirely satisfactory. According to the arguments given
by Adams22,23 and confirmed recently in large-order numerical calcula-
tions30, the SRS expansion must diverge when one of the monomers has
three or more electrons. It might seem that this divergence should prevent
a systematic improvement of the second-order SRS treatment by including
higher order perturbation corrections. However, the arguments of Adams
do not apply to the SAPT expansion suggested by Kolos and by one of the
present authors25 and developed fully in ref.28 This expansion, referred to
as the JK expansion. coincides with the SRS expansion through the second
order and, as recently shown in large-order numerical calculations31, con-
verges when one of the monomers has more than two electrons, providing
in this way a systematic procedure to improve on the second-order SRS re-
sults.

Despite the obvious spectroscopic importance of interatomic or inter-
molecular interactions involving electronically excited monomers, very little
is known about the applicability of SAPT to dimers in electronically excited
states. This is perhaps not surprising since the exchange effects in excited
states are much stronger and can be expected to be more difficult to de-
scribe than in the ground state. In 1979 van Hemert and van der Avoird32

applied a simple version of SAPT to the excited water dimer. They consid-
ered only the first-order effects (including exchange) and did not formulate
a complete SAPT expansion. Soon after that Chalasinski and Szalewicz33 de-
veloped two SAPT expansions which can be viewed as degenerate state gen-
eralizations of the Eisenschitz–London–Hirschfelder–van der Avoird34–36

(ELHAV) and Murrell–Shaw–Musher–Amos37,38 (MSMA) theories. Unfortu-
nately, the convergence tests performed for several excited states of the H2

+

ion have shown that both expansions diverge for all interatomic dis-
tances33. More recently, Korona et al.39 used the wave operator technique to
formulate three SAPT expansions applicable to interactions of degenerate
and quasidegenerate states. Numerical calculations for the interaction of a
ground-state helium atom with an excited hydrogen atom showed good
convergence for the resulting 2Π and 2∆ states. However, for the excited
A2Σ+ state the convergence was only moderately good and for the C2Σ+ state –
poor. The unsatisfactory convergence for the latter state was attributed to
the effect of higher Rydberg states acting as intruders39.
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In the present work we intend to investigate the performance of SAPT for
a very different kind of excited state, namely for the dimer involving an ex-
cited helium atom in the 1s2s 3S state and a ground-state hydrogen atom.
On the one hand, this system is simpler than the one considered in ref.39

since it does not exhibit the orbital degeneracy. On the other hand, it is
considerably more difficult since the excitation energy is much higher, in
fact, higher than the ionization energy of the hydrogen atom. As a conse-
quence, one of the two quasidegenerate dimer states resulting from the in-
teraction – the doublet state – becomes a narrow resonance decaying via the
Penning ionization mechanism40. The other state – the quartet – remains
electronically bound (within the nonrelativistic theory) and exhibits a shal-
low van der Waals well. Thus, the potential energy curve for the fully
antisymmetric quartet state is submerged in the continuum of doublet
states of different permutational symmetry. This continuum can be viewed
as an infinite family of intruder states and it is clear that in such circum-
stances any perturbation theory formalism must have great difficulty to
converge to the exact bound-state solution of the Schrödinger equation. It
should be mentioned that this is not an unusual situation in the theory of
intermolecular forces. As emphasized by Adams19,20, for all dimers contain-
ing monomers with more than two electrons the physical ground state is
submerged in the continuum of Pauli forbidden states. The helium atom in
the 1s2s 3S state interacting with the ground-state hydrogen atom repre-
sents actually the simplest system for which the bound state resulting from
the interaction is submerged in the continuum (in this case physical) of
states of different permutational symmetry.

In this communication we present the results of large-order SAPT calcula-
tions for the lowest quartet state of HeH performed using the conventional
SRS, ELHAV, and JK formulations, as well as the method of Amos and
Musher41 (AM) recommended by Adams23 as an appropriate procedure for
states submerged in the Pauli forbidden continuum. We shall also test three
SAPT procedures involving a short-range attenuation of the attractive inter-
atomic Coulomb terms in the Hamiltonian. Such an attenuation, achieved
by a simple regularization procedure, was recently proposed by Patkowski
et al.42 and by Adams43 to eliminate the pathologically slow convergence or
divergence of SAPT expansions. All perturbation calculations will be done
using a finite, carefully optimized basis set and the results will be compared
with the full configuration interaction (FCI) interaction energies computed
using the same basis set and counterpoise corrected for the BSSE 3.
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CONVENTIONAL SAPT EXPANSIONS

The nonrelativistic clamped-nuclei Hamiltonian of two interacting atoms
A and B with atomic numbers ZA and ZB, respectively, can be naturally par-
titioned as

H = H0 + V, (1)

where the unperturbed (zeroth-order) Hamiltonian H0, describing the non-
interacting atoms, is given by the sum

H0 = HA + HB (2)

of atomic Hamiltonians HX, X = A, B,

H
Z
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rpq denoting the distance between particles p and q, and the interaction
operator V takes the form
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In Eqs (3) and (4), and throughout the entire text, atomic units are used. It
is important to note that when defining the zeroth-order operator H0 we
had to arbitrarily assign certain electrons, e.g., those labeled by 1, 2, ..., NA,
to atom A and the remaining ones, e.g., those labeled by NA + 1, NA + 2, ...,
NA + NB, to atom B. This fact has profound consequences, namely, H0 treats
electrons as distinguishable particles and its eigenfunctions do not satisfy
the Pauli exclusion principle. In fact, the conventional Hilbert space HAB of
all N-electron (N = NA + NB) wave functions of the dimer is not invariant
under the action of H0, so this operator must be considered as acting in a
larger Hilbert space. Since the eigenfunctions of H0 are of the form of the
products φAφB, where φA and φB are eigenfunctions of HA and HB, respec-
tively, it is clear that we must treat H0 as acting in the space HA � HB, the
tensor product of Hilbert spaces HA and HB for subsystems A and B, respec-
tively. When complete, or the so-called dimer-centered3 basis sets are used
in HA and HB, then HAB is a subspace of HA � HB.
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The polarization expansion for the interaction energy and for the dimer
wave function is obtained if the Hamiltonian H is parametrized as H = H0 +
λV and the resulting Schrödinger equation

( ) ( ) ( ) ( )H V E0 + =λ ψ λ λ ψ λ (5)

is solved by expanding ψ(λ) and E(λ) as power series in λ, i.e., by assuming
that ψ(λ) and E(λ) can be developed as convergent series

ψ λ ψ λψ λ ψ( ) ... ,( ) ( ) ( )= + + +0 1 2 2 (6)

E E E E( ) ... .( ) ( ) ( )λ λ λ= + + +0 1 2 2 (7)

Note that the operator H(λ) = H0 + λV has the same symmetry properties as
H0, so for λ ≠ 1 the eigenfunction ψ(λ) does not belong to HAB but to the
larger space HA � HB. When λ = 0, one obtains the zeroth-order equation
H0ψ(0) = E(0)ψ(0), which has a solution

ψ φ φ( ) ( ), ,0 0= = +A B A BE E E (8)

where φA and φB are wave functions of the atomic states into which the
dimer dissociates and EA and EB are the energies of these states, i.e., HX φX =
EX φX, X = A, B. We assume that the eigenvalue E(0) is nondegenerate or can
be made nondegenerate by restricting our considerations to functions ψ(λ)
of specific symmetry with respect to the symmetry group of H(λ). Under
this assumption, the perturbation energies E(n) and wave functions ψ(n), n =
1, 2, ..., can be computed from the well-known recurrence relations of the
Rayleigh–Schrödinger perturbation theory

E Vn n( ) ( )|= 〈 〉−φ ψ0
1 , (9)

ψ ψ ψ( ) ( ) ( ) ( ) ,n n k

k

n
n kR V E R= − +−

=

−∑0
1

1
0 (10)
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where ψ(0) ≡ φ0 and R0 is the reduced resolvent of H0 defined, e.g., by

R P H E P P0 0 0
0

0
1

0 0 01= − − + = 〉 〈−( )( ) , | |.( ) φ φ (11)

In practice the evaluation of the resolvent operator R0 is usually too compli-
cated and is avoided by determining R0f ≡ g from the linear equation (H0 –
E(0) + P0)g = (1 – P0)f. If the series (6) converges at λ = 1, the interaction en-
ergy E, defined as E = E(1) – EA – EB, can be expanded as the sum E(1) + E(2) +
E(3) + ... .

When λ varies from 0 to 1, the functions E(λ) and ψ(λ) ∈ HA � HB provide
a correlation between the eigenvalue E(0) = EA + EB and eigenfunction ψ(0) =
φAφB of H0 on the one hand and certain eigenvalue E(1) and eigenfunction
ψ(1) ∈ HA � HB of H on the other. This correlation gives an important quali-
tative information about the function E(λ) and about a possible conver-
gence radius of the series (6) and (7). To illustrate this point, we shall con-
sider specifically the interaction of a triplet helium atom with a hydrogen
atom. Assuming that all spins in the system are aligned, we can factorize
the spin part of the wave function and work only with spatial wave func-
tions. The Hilbert space HA consists then of all antisymmetric functions
φ(r1,r2) of the spatial electronic coordinates r1 and r2, while HA � HB is a
space of all three-electron functions φ(r1,r2,r3) which are antisymmetric
when the position vectors r1 and r2 are interchanged. The spectra of H0 (left
bar diagram) and of H (right bar diagram) in HA � HB, computed for a large
interatomic distance R = 12.5 bohr, are shown in Fig. 1. The correlation be-
tween the two lowest levels of these spectra (via E(λ)) and between the cor-
responding ionization thresholds is also indicated. It is seen that at λ equal
to about 0.7 the ground-state energy of H0 + λV undergoes an abrupt
change and at λ = 1 the spectrum is qualitatively different from the spec-
trum of H0. This change corresponds to the fall of the electron number 3
from the hydrogen to the helium 1s orbit and a simultaneous transfer of
the 2s electron from the helium to the hydrogen atom. The ionization
threshold of H0 + λV also collapses but at a slightly larger value of λ. As a
result, the lowest quartet level of H, visible on the r.h.s. of Fig. 1 at about
the same position as the unperturbed energy E(0), is submerged in the con-
tinuum of states of the permutational symmetry corresponding to the spin
doublet. Figure 1 also shows that the difference E(1) – E(0) is very large and
does not vanish for large R, so this difference cannot be taken as a defini-
tion of the interaction energy. It is clear that V, having such a dramatic ef-
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fect on the spectrum of H0, cannot be viewed as a small perturbation and
the corresponding RS perturbation series (i.e., the polarization expansion)
cannot be expected to converge at λ = 1.

The abrupt downward bend of the ground-state energy, visible in Fig. 1,
is due to the sharp avoided crossing with the first excited state. For the in-
teratomic separation of R = 12.5 bohr (corresponding to the minimum of
the van der Waals well in the lowest quartet state) this avoided crossing oc-
curs at λ = 0.719. Its position increases somewhat with R and approaches
0.740 as R grows to infinity. A sharp avoided crossing, such as the one visi-
ble in Fig. 1, is a manifestation of the presence of a conjugate pair of
branch-point-type singularities located very close to the real axis. There-
fore, the convergence radius of the polarization expansion, bounded from
above by the modulus of these singularities, cannot be greater than 0.740 at
large R.

The SRS Theory

The simplest SAPT approach which for closed-shell monomers gives a good
accuracy already in the second order7 is the SRS theory. The SRS perturba-
tion series is derived by employing the following interaction energy expres-
sion28
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FIG. 1
Spectra of H0 (left bar diagram) and of H (right bar diagram) in HA � HB. The correlation be-
tween these spectra is shown by plotting the lowest two levels and the ionization threshold of
H0 + λV as a function of λ. The unit of energy is hartree. The interatomic distance is R = 12.5
bohr
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where A is the antisymmetrizer (or other appropriate symmetry projector)
and ψ(λ) is a solution of Eq. (5), and by expanding ESRS(λ) in powers of λ:
E E ESRS SRS SRS( ) ...( ) ( )λ λ λ= + +1 2 2 . The recurrence equations for the SRS perturba-
tion energies E n

SRS
( ) are28

E N V En n k n k

k

n

SRS SRS
( ) ]( ) ( ) ( )[ | |= 〈 〉 − 〈 〉− −

=

−

0 0
1

0
1

φ ψ φ ψA A
1

∑ , (13)

where N0 0 0
1= 〈 〉 −φ φ|A and ψ(n) are the perturbation corrections to the wave

function in the RS perturbation theory, given by Eq. (10). SRS is an example
of the so-called weak symmetry-forcing procedure9,25, because the anti-
symmetrization operator appears only in the energy expression, while the
equations for the perturbed wave function do not contain any symmetry
projection.

The expression (12) had been proposed28 before it was discovered that
the series (6) is usually divergent26 at λ = 1. Despite its divergence, the SRS
expansion has turned out to provide, somewhat surprisingly, very good re-
sults in low-order calculations7,30,44. Very good results at large distances are
understandable since the SRS theory is consistent27 with the exact asymp-
totic expansion of the interaction energy45 in powers of 1/R (this means
that each van der Waals constant can be obtained in a finite-order SRS
treatment). Good representation of the exchange part of the interaction en-
ergy does not have such a theoretical foundation. However, based on the
results of numerical calculations30 for the interaction of the ground-state
lithium and hydrogen atoms, it appears that a very good approximation to
the exchange energy can be obtained at large R using a finite-order SRS
treatment.

The ELHAV Theory

The ELHAV theory is the oldest34 SAPT formulation. Numerous different
derivations of this theory have been given in the literature28,34–36,46. We be-
lieve that the formulation of ref.28, based on the idea of forcing the symme-
try in an iterative solution of the Bloch form47 of the Schrödinger equation,
reflects best the essential idea of this method. The nondegenerate Bloch
equation, equivalent to Eq. (5) when λ = 1, is
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ψ φ ψ= + −0 0R V( )E (14)

E = 〈 〉φ ψ0 | ,V (15)

where ψ = ψ(1) and where, as always in the Bloch theory, the intermediate
normalization 〈 〉φ ψ0 | = 1 is assumed. It is well known that by iterating Eqs
(14) and (15) using φ0 as an initial approximation to ψ one obtains the
usual RS perturbation expansion25. We know, however, that because of its
incorrect permutational symmetry the function φ0 is always a poor25 ap-
proximation to ψ. A much better starting point for the iterations would be
the function

ψ φ0 0 0= N A , (16)

which approximates ψ very well at large R, in the sense that27 || ||ψ ψ0 − =
O R( )−3 (for neutral monomers). Iterating Eqs (14) and (15) using ψ0 as a
starting point leads to the MSMA theory25, which still diverges in most
cases31,48. The reason of this divergence is the fact that the r.h.s. of Eq. (14)
does not preserve the symmetry of ψ. This problem can be circumvented if
the correct symmetry is forced in each step of the iterations, i.e., if Eqs (14)
and (15) are replaced by the projected Bloch equation

ψ φ ψ= + −0 0R V( ) ,E A (17)

E
V

=
〈 〉
〈 〉
φ ψ
φ ψ
0

0

|

|
.

A

A
(18)

The denominator in Eq. (18) was introduced to take care of the fact that the
symmetry projection does not conserve the intermediate normalization, cf.,
Eq. (12). The ELHAV expansion is obtained by iterating Eqs (17) and (18)
using ψ0 of Eq. (16) to start the iteration process28,31. The recurrence equa-
tions for the resulting perturbation corrections E n

ELHAV
( ) are28

E V En n k
ELHAV ELHAV ELHAV ELHAV
( ) ( ) ( ) (| |= 〈 〉 〈−φ ψ φ ψ0

1
0A A− n k

k=

n
− 〉∑ )

–

1

1

, (19)

where ψ φELHAV
( ) ,0

0 0= N A ψ φELHAV ELHAV
( ) ( )( ) ,1

0 0
1

0= −N R E VA and

ψ ψ ψELHAV ELHAV
( 1)

ELHAV ELHAV
( )( ) – ( ) –n n k n kR V E R= − +0 0A A

k

n

=
∑

1

(20)
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for n ≥ 2. In a few model calculations performed thus far28,31,42 the ELHAV
method was shown to converge fast in high orders but was giving very poor
results in a low-order treatment because of the well-known incorrect asymp-
totic behavior of the energy corrections at large interatomic separa-
tions25,49,50.

The JK Theory

When the symmetry-forcing procedure characteristic of the ELHAV theory
is relaxed by removing the antisymmetrizer A from the energy expression of
Eq. (18) (as suggested in ref.25), and leaving it only in the wave function
equation, Eq. (17), and when the resulting equations are solved by iteration
using ψ0 as a starting point, one obtains the JK expansion28,31. The resulting
expression for the energy corrections E n

JK
( ) is

E Vn n
JK JK

( –1)( ) |= 〈 〉φ ψ0 , (21)

where ψ φJK
(0) = N0 0A , ψ ψJK

(1)
ELHAV
(1)= and

ψ ψ ψJK
( )

JK
( 1)

JK JK
( )n n k n k

k

n

R V E R= − +
=
∑0 0

1

A A– ( ) – (22)

for n ≥ 2. It is easy to see that E EJK SRS
( ) ( )1 1= and E EJK SRS

( ) ( )2 2= , so the JK method
through the second order correctly predicts the leading terms of the large-R
asymptotic expansion of the interaction energy (through C10R –10 for atom–
atom interactions). It also appears31 that its convergence radius (and, conse-
quently, the high-order convergence rate) is practically the same as in the
ELHAV method. Therefore, the JK method can be expected to give much
more accurate results than both the SRS or ELHAV approaches.

The AM Theory

The AM theory is based on the observation41 that, after antisymmetrization,
a nonsymmetric eigenfunction φ of the Hamiltonian HAM = H0 + AV beco-
mes an eigenfunction of H0 + V, i.e., if (H0 + AV )φ = E φ then (H0 + V )A φ =
EA φ. This means that φ is a primitive wave function26, i.e., a function from
which the exact wave function is obtained by a symmetry projection. The
AM theory had remained forgotten until Adams23,43 made an important ob-
servation that AV should be a much weaker perturbation than V itself, so
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the spectra of H0 and H0 + AV should not differ as dramatically as the
spectra of H0 and H0 + V. In particular, he observed that the continuous
spectrum of H0 + AV (in HA � HB) starts much higher than the continuous
spectrum of H0 + V, and does not cover the physical ground state of the
dimer. The AM expansion has not been applied thus far in a large-order cal-
culation, so the present study represents the first test of the convergence of
this method.

If (H0 + AV )φ = E φ and A φ ≠ 0 then the eigenvalue E represents the en-
ergy of the physical state of the dimer and the interaction energy can be com-
puted directly by applying the RS perturbation theory to the (non-Hermitian)
Hamiltonian H0 + AV and treating AV as a perturbation. The resulting wave
function and energy corrections can be obtained from the equations

E Vn n
AM AM

( 1)( ) –|= 〈 〉φ ψ0 A , (23)

ψ ψ ψAM
( )

AM
( 1)

AM AM
( ) ,n n k n k

k

n

R V E R= − +
=
∑0 0

1

A – ( ) – (24)

where ψ φAM
(0) ≡ 0 . We found that the perturbation expansion for the energy,

defined by Eqs (23) and (24), is convergent but the convergence is very
slow. We also found that a dramatically better convergence is obtained if
the perturbation series for the wave function, defined by these equations, is
antisymmetrized (in the spirit of the SRS method) and used as ψ in the en-
ergy expression of Eq. (18). The resulting improved AM perturbation ener-
gies, defined by expanding Eq. (18) in powers of V and denoted by E n

SAM
( ) (for

the symmetrized AM expansion), can be obtained recursively from an
SRS-like equation of the form

E N V En n k n k

k
SAM AM SAM AM
( ) ( – ) ( ) ( – )[ | |= 〈 〉 〈 〉

=
0 0

1
0φ ψ φ ψA A−

1

1n –

∑ ] , (25)

where the functions ψ AM
( )n are defined by Eq. (24).

REGULARIZED SAPT EXPANSIONS

None of the SAPT expansions discussed in the preceding section, except for
the divergent RS and SRS theories, is consistent with the large-R asymptotic
expansion of the interaction energy45. This is due to the fact that the per-
turbation AV, weakened by the action of the antisymmetrizer A, differs sig-
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nificantly from V at large R. This problem can be circumvented by weaken-
ing only the short-range part of V and leaving the long-range part intact.
The idea of treating the long- and the short-range parts of V differently,
proposed by Adams43,51, can be implemented in practice by the regulariza-
tion technique of ref.42 According to this reference the attractive Cou-
lombic terms in the one-electron part of V are split as r v r v rp t

− = +1 ( ) ( ),
where

v r rp
r( ) ( )–= − −1 1

2

e η (26)

and

v r r v r rt p
r( ) ( )= − =− − −1 1 2

e η (27)

are the regular and singular parts of 1/r, respectively. Different values of the
regularization parameter η can be used for the Coulomb potentials of
monomers A and B. Of course other regularization functions can also be
used. One can set, e.g., vp( r ) = r –1 erf ( η r) (for a review of other choices see
ref.52), but we found that these other functions offer no real advantage over
the simple choice of Eq. (26). One different choice, free from arbitrary pa-
rameters, will, however, be considered in part Smeared Nuclear Charge Reg-
ularization.

The regularization of the Coulomb potential leads to the following parti-
tioning of the interaction operator V:

V = Vp + Vt , (28)

where

V Z v r Z v rt t i
i

t j
j

= −
∈ ∈
∑ ∑B B

A
A A

B

( ) – ( ) (29)

and

Vp = V – Vt . (30)

The operator Vp may be viewed as being responsible for the mutual polar-
ization of the electron clouds at both atoms and for the intermonomer cor-
relation of electrons, while Vt for the resonance tunneling of electrons be-
tween interacting atoms, as indicated by the subscripts p and t.
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Regularized SRS Theory

The simplest way to utilize the regularization and the resulting partitioning
of V is to initially neglect the short-range part Vt . When Vt is neglected and
when η is sufficiently small, the electrons from atom B are not attracted by
a strongly negative Coulomb potential at the vicinity of the nucleus A.
Consequently, the electron transfer leading to the dramatic variation of the
function E(λ) and to the low-lying continuum of different permutational
symmetry is suppressed. The operator Vp can then be viewed as a small per-
turbation and one can expect that the RS perturbation procedure corre-
sponding to the Hamiltonian partitioning H0 + λVp, i.e., the regularized RS
(R-RS) expansion, will be convergent. Of course, the converged perturbed
wave function ψp(λ) will not have the correct permutational symmetry and
will differ substantially for λ = 1 from the exact function ψ(1). One can ex-
pect53, however, that ψp(1) will be for large R a good approximation to an
exact primitive wave function from which ψ(1) can be obtained by an ap-
propriate symmetry projection, in our case by the action of the
antisymmetrization operator A. This means that the function A ψp(1) will be
a good approximation to ψ(1) and that the energy expression

E
V p

p
R -SRS ( )

| ( )

| ( )
λ

φ λ ψ λ
φ ψ λ

=
〈 〉

〈 〉
0

0

A

A
(31)

will give for λ = 1 a very good approximation to the exact interaction
energy E (note that the full interaction operator V, rather than its polariza-
tion part Vp, is used in this energy formula). The corresponding regularized
SRS expansion (R-SRS) is defined42 by expanding Eq. (31) in powers of λ.
The resulting expression for the n-th order R-SRS energy is

E N V En
p
n k

p
n k

R -SRS R -SRS
( ) ( – ) ( ) ( – )[ | |= 〈 〉 〈 〉0 0

1
0φ ψ φ ψA A−

k

n

=
∑

1

1–

] , (32)

where ψ p
n( ) are the perturbed wave functions of the R-RS theory, i.e.,

ψ λ φ λψ λ ψp p p( ) ... .( ) ( )= + + +0
1 2 2 Since the R-SRS and SRS energies differ only

by some short-range terms (due to Vt), the R-SRS expansion has the same
correct asymptotic behavior at large R as the SRS theory.

For η values of the order of unity, the R-SRS expansion for the triplet state
of H2 was shown42 to converge very fast (unlike the conventional SRS
expansion employing the full, nonregularized Coulomb potential) and its
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infinite-order sum represented about 98% of the exact interaction energy at
the van der Waals minimum distance of R = 8 bohr. However, for two-
electron systems the continuum of intruder states does not appear and the
good performance of the R-SRS theory, observed for H2, may not occur for
larger systems. In fact, recent calculations54 show that for the interaction of
the ground-state lithium and hydrogen atoms the infinite-order R-SRS the-
ory is substantially less accurate than for H2.

Regularized SAM Theory

The R-SRS expansion correctly recovers the whole long-range asymptotics
of the interaction energy and the major part of the exchange energy, but
misses, even in infinite order, some exponentially vanishing, presumably
small part of the interaction energy resulting from the presence of the oper-
ator Vt in the exact Hamiltonian. A method to correct the R-SRS expansion
by including Vt via the symmetry-forcing procedure of the ELHAV theory
was proposed in ref.42, and developed further in ref.54 In the present work
we consider another method of including Vt, based on the SAM theory. The
idea of this method – proposed by Adams43 and referred to by him as the
corrected SRS theory (cSRS) – is to weaken Vt by multiplying it by A and,
then, to include AVt in the perturbed Hamiltonian. Specifically, Adams pro-
posed to apply the conventional RS perturbation theory to the equation

( ) ( ) ( ) ( ) ,H V E0 + =λ φ λ λ φ λR -AM R -AM (33)

where

VR-AM = Vp + A(Vt – D) (34)

and D Vt= 〈 〉 〈 〉φ φ φ φ0 0 0 0| |A A/ . For λ = 1 this equation defines an exact
primitive function φ(1). Since the perturbation Vp is small and the Coulomb
singularities in AVt are weakened (by the group theoretical normalization
factor of A), one can expect that the resulting RS expansion φ(λ) = φ0 +
λφ(1) + λ2φ(2) + ... and the corresponding expansion for the interaction
energy, defined as ER-AM(λ) + D, will be convergent for λ = 1. We found that
these expansions indeed converge but the perturbation series for ER-AM(λ)
converges very slow at λ = 1. Much faster convergence is obtained if the in-
teraction energy is defined by the SRS-like energy expression
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E
V

R -SAM

( )
( )

|

| ( )
.λ

φ λ φ λ
φ φ λ

=
〈 〉

〈 〉
0

0

A

A
(35)

The expansion of Eq. (35) in powers of λ leads to a perturbation expansion
for the interaction energy which can be viewed as a regularized SAM
(R-SAM) expansion. The specific expression for the n-th order R-SAM energy
is

E N V En n k n k

k
R -SAM
( )

R -SAM= 〈 〉 〈 〉−

=
0 0

1
0[ | |( – ) ( ) ( )φ φ φ φA A−

1

1n –

∑ ] , (36)

where φ(0) ≡ φ0. Since Vt is a short-range operator, it is easy to see that the
corrections E n

R -SRS
( ) and E n

R -SAM
( ) differ by exponentially vanishing terms. Conse-

quently, each correction of the R-SAM expansion has the correct asymp-
totic behavior at large R. Adams applied the R-SAM expansion (with a dif-
ferent regularization function) through the first order in the wave function
obtaining only a marginal43 improvement over the conventional SRS treat-
ment. In the present work we shall report a large-order test of the R-SAM
method.

Adams’s Zero-Induction Theory

To improve the accuracy of his cSRS method at short interatomic distances,
Adams proposed to reformulate it to include the induction effects in the
zeroth order43. The formal scheme of his method, which he refers to as the
ZI theory, is the same as the scheme of the R-SAM method except that the
definitions of all operators are changed to include the effect of the induc-
tion interaction. The unperturbed operator H0 is replaced by

~ ~ ~
H H H0 = +A B ,

where
~
H A = HA + ΩB,

~
H B = HB + ΩA, and

Ω B B B
A A

B
(0)Z d= − +

∈ ∈
∑ ∫∑v r

r
r rp i

i iji
j j( ) ( )

1 ρ (37)

is the operator of the electrostatic potential of atom B resulting from the
regularized Coulomb attraction of the nucleus and the repulsive potential
of the electrons computed using the electron density ρB

(0) ( )r j of the unper-
turbed atom. The definition of ΩA is obtained by interchanging A and B in
Eq. (37). The unperturbed function φ0 is replaced by the function

~ ~ ~φ φ φ0 = A B ,
where

~φX , X = A, B, is the ground-state eigenfunction of
~
H X , i.e.,
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~ ~ ~ ~
H EX X X Xφ φ= . The zeroth-order energy E(0) is accordingly replaced by
~ ~ ~

.( )E E EA
0 = + B The operator Vp is replaced by

~
Vp = Vp – ΩA – ΩB and the op-

erator Vt remains unchanged,
~
V Vt t= . The perturbation expansion for the

function
~
( )φ λ , defined by appropriately modified Eqs (33) and (34), can be

obtained from the conventional equations of the RS perturbation theory in-
volving the reduced resolvent

~
R0 defined by Eq. (11) with tildas added over

all symbols.
With these substitutions, Eqs (33)–(36) uniquely define the perturbation

energies E n
ZI
( ) of the ZI theory. The interaction energy E is obtained from the

expression

E = − + + +~
... ,( ) ( )E E E E0 0

ZI
(1)

ZI
(2) (38)

i.e., by adding the trivially computed difference of zeroth-order energies to
the sum of the ZI corrections. It is worthwhile to note that the ZI method
makes sense only with appropriately regularized Coulomb potential. With-
out regularization, the singular part of ΩX would generate unphysical elec-
tron transfer between atoms and the new zeroth-order function

~φ0 would
lose its similarity to φ0.

It should be mentioned that Adams’s formulation of the ZI method dif-
fers slightly from ours. Apparently for practical reasons, Adams included in
~
H 0 a small singular term of the form (NA!NB!/N!)Vt and subsequently sub-
tracted it from

~
Vp . We believe that this additional complication is unneces-

sary and we did not introduce it. Adams applied the ZI method through the
first order in the wave function and obtained a significant improvement
compared to the R-SAM method. In the present work we shall report a large-
order test of the ZI method.

Smeared Nuclear Charge Regularization

One of the simplest methods of regularizing the Coulomb potential in-
volves replacing the point-charge model of the nucleus by a nuclear charge
smeared with a certain charge density distribution. We shall refer to this
method as to the smeared nuclear charge (SNC) regularization. In fact, the
potential regularized by the error function r –1 erf ( η r) can be viewed as re-
sulting from the SNC described by the Gaussian distribution with
σ η= 1 2/ . A specific realization of the SNC regularization is obtained if the
positive nuclear charge is smeared with the density equal exactly to the
electronic density ρX

( ) ( )0 r . The regularized potential vp acting on the elec-
trons, e.g., of atom A, takes then the form
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v
Z rp i

ij
j j( ) ( ) .r r r= ∫

1 1

B
B
(0) dρ (39)

The advantage of the potential of Eq. (39) is that it is defined by the intrin-
sic property of an atom and does not contain any arbitrary parameters. We
tested the regularization defined by Eq. (39) in high-order R-SAM calcula-
tions. The resulting perturbation procedure turns out to be equivalent to
the P1 method of ref.51 and will be referred to as the SNC-P1 method. It is
interesting to note that for vp given by Eq. (39) the operators ΩX of Eq. (37),
and consequently, all induction effects vanish identically. Thus, the
SNC-P1 method is invariant under the transformation described in the pre-
vious part leading from the R-SAM to the ZI method.

NUMERICAL PROCEDURE AND COMPUTATIONAL DETAILS

All SAPT calculations were performed using a finite orbital basis and were
compared with FCI calculations employing the same basis. The basis set in
HA consisted of functions of the form

χ χ χ χ χpq p q p q p q m( , ) [ ( ) ( ) ( ) ( )] , ,r r r r r r1 2 1 2 2 1

1

2
1= − ≤ < ≤ (40)

where the orbitals χ1, ..., χm, assumed to form an orthonormal set, are con-
structed from a primitive set of atomic orbitals localized on both atoms
and, possibly, in the middle of the line joining the atoms. Thus, we em-
ployed the so-called dimer-centered basis set3 (DCBS) with midbond func-
tions. Since the functions χpq are used to represent triplet wave functions,
they are taken to be antisymmetric. Although this is not necessary, we used
as χp the functions diagonalizing the Fock operator for the lowest triplet
state of helium. The Hilbert space HB is spanned by the same set of m
orthonormal one-electron functions χp. However, to simplify the solution
of perturbation equations, it is convenient to diagonalize HB and employ as
the basis in HB the functions φr, satisfying 〈 〉 =φ φ ε δr s s rsH| B .

The basis set in HA � HB is the tensor product of the bases in HA and HB
and consists of m2(m – 1)/2 functions of the form

ψ χ φpqr pq r( , , ) ( , ) ( ) .r r r r r r1 2 3 1 2 3= (41)
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This basis is orthonormal despite the lack of orthogonality between the ba-
sis functions χp and φr, i.e., despite the fact that 〈 〉 = ≠χ φp r prS| 0. Because of
the relation 〈 〉 =φ φ ε δr s r rsH| B , the matrix of HA + HB computed with the ba-
sis ψpqr consists of m diagonal blocks of dimension m(m – 1)/2, which
greatly simplifies the solution of the perturbation equations.

In SAPT calculations, we need to calculate matrix elements of the anti-
symmetrizer A. Since P12 χpq = –χpq, where P12 is the permutation operator
defined for any χ(r1,r2) as (P12χ) (r1, r2) = χ(r2,r1), the operator A, when act-
ing on functions from HA � HB, can be written in the form (1 – P13 – P23)/3.
When P13 + P23 acts on the basis function ψpqr, it produces a function which
is not an element of the basis set of Eq. (41). However, (P13 + P23)ψpqr can
easily be expressed in terms of this basis by using the unitary transforma-
tion

χ φ φ χp pr r
r

m

r pr p
p

m

S S= =
= =
∑ ∑, ,

1 1

(42)

where we assumed that the overlap matrix Spr is real. Thus, by construction,
the space HA � HB is invariant under the action of A. This invariance is nec-
essary to guarantee that a finite basis set SAPT calculation converges to the
counterpoise corrected3 FCI interaction energy computed with the same ba-
sis set44.

The computer code developed to perform calculations reported in this
work is similar in its salient features to the code used in ref.30 and we refer
the reader to this reference for some details supplementing the information
given further on in this section.

One-Electron Basis Set and Integral Evaluation

All FCI and perturbation calculations were performed with three dimer-
centered basis sets developed specifically for these calculations. The small-
est basis, referred to as B61, consisted of 7s5p3d basis on helium and
5s3p2d basis on hydrogen. By adding to B61 the 3s3p2d part (22 functions)
of the 3s3p2d1f1g midbond set from ref.55 we obtained the basis B61+22b.
Finally, our largest basis, referred to as B106, consisted of 7s7p5d2f basis on
helium and 5s4p3d1f basis on hydrogen. The 7s set for helium is a contrac-
tion of a 30s set obtained by a full nonlinear optimization of the Hartree–
Fock energy for the lowest triplet state of helium. Analogously, the 5s set
for hydrogen is a contraction of the 29s basis obtained from the formula
recommended by Morgan and Haywood56 for an accurate representation of
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the 1s hydrogen orbital. The exponents and the contraction coefficients of
the s functions can be supplied upon request.

The exponents of the polarization functions, listed in Table I, were ob-
tained in the following way. The three largest p and two largest d helium
exponents of B61 were optimized by minimizing the FCI correlation energy
of helium in the triplet state using the helium part of our dimer basis set. In
the same way we optimized the four largest p and three largest d helium ex-
ponents of B106. The remaining p exponents on helium and all p expo-
nents on the hydrogen atom were determined by optimizing the C6 disper-
sion constant calculated from the formula57

C
z z zs u

s uus
6

0 1 2
2

0 3
2

0

6= −
〈 + 〉 〈 〉

+≠
∑ | | | | | | | |φ φ φ φ

ω ω

A A B B

A B
≠
∑

0

, (43)

where φs
A are the FCI wave functions for the triplet states of helium and φu

B

are hydrogen atom wave functions computed using the helium and hydro-
gen parts, respectively, of the original atomic basis set, while ωs

A and ωu
B are

the corresponding excitation energies. The s exponents were kept fixed dur-
ing the optimizations.
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TABLE I
Optimized exponents of the p, d, and f orbitals used in this work

base Atom Orbital Optimized exponents

B61 He 5p 0.01838, 0.04287, 0.1164, 0.4351, 1.309

3d 0.0281, 0.211, 0.777

H 3p 0.06764, 0.1895, 0.7176

2d 0.0669, 0.201

B106 He 7p 0.00701, 0.01861, 0.03933, 0.09039, 0.3039, 0.6962,
2.336

5d 0.0180, 0.0435, 0.184, 0.578, 1.34

2f 0.018, 0.044

H 4p 0.05742, 0.1401, 0.3948, 1.563

3d 0.0539, 0.130, 0.385

1f 0.081



The remaining d exponents on helium and all d exponents on hydrogen
were determined in a similar way by optimizing the dispersion constant C8
without changing the values of s and p exponents determined in previous
steps. Finally, the f exponents were determined by optimizing the disper-
sion constant C10 keeping the s, p, and d exponents fixed. The C8 and C10
constants were computed at the FCI level from the formulas analogous to
Eq. (43), see ref.57

The optimization of the C6, C8, and C10 constants was performed using a
code written specifically for this task, making use of the multipole moment
integrals calculated using the ATMOL package58 and transformed to the
Hartree–Fock basis by means of a properly modified transformation pro-
gram from the SAPT2002 suite of codes29. The obtained values of dispersion
constants, presented in Table II, compare well with the literature results of
Spelsberg and Meyer59.

Atomic integrals and the HF orbitals for helium were obtained using the
ATMOL package58. The four-index transformation of atomic integrals was
performed using a modification of the transformation program from the
SAPT2002 package29. Since the limit of the converged perturbation series
was sensitive to the accuracy of the diagonalization of HB, it was necessary
to perform this diagonalization with a very high precision. Specifically, to
obtain good agreement with the FCI interaction energy all off-diagonal ele-
ments of HB had to be smaller than 10–13.

As our basis set consisted of Gaussian-type orbitals and the function used
to regularize the Coulomb singularities was also Gaussian, the one-electron
integrals with the potential vp could be easily obtained using the well-
known fact that the product of two s Gaussian functions is also an s Gaus-
sian function located on the line joining the centers of the multiplied func-
tions. When one of the Gaussian functions has an angular factor, this angu-
lar factor has to be shifted to the new center, which can be easily done us-
ing the well-known translation formula for solid spherical harmonics60.
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TABLE II
Values of the C6, C8, and C10 coefficients for the 1s2s triplet-state helium–ground-state hy-
drogen atom interaction obtained using bases B61 and B106

Basis C6 × 101 C8 × 103 C10 × 105

B61 –8.786 –5.099

B106 –8.791 –5.200 –4.198

Ref.59 –8.784 –5.181 –4.165



FCI and High-Order SAPT Calculations

To obtain the zeroth-order function and energy for helium and to calculate
the reference supermolecular interaction energy for the lowest 4Σ+ state of
HeH, we performed the FCI calculations in the spaces HA and HA � HB, re-
spectively. For helium we used the conventional Davidson methods61 as
coded by Duch62. For the lowest quartet state of HeH we used a symmetry-
adapted Davidson procedure described in ref.30 In this modification of the
Davidson method, the trial functions for computing the energy in a given
iteration are symmetry projected onto the subspace of appropriate permuta-
tional symmetry, in our case with the antisymmetrizer A. This projection is
necessary since the basis set in HA � HB is not adapted to the full symmetry
of the Hamiltonian, and the conventional Davidson iterations do not con-
serve the symmetry of functions obtained in preceding iterations30. In the
case of the helium atom, the initial guess for the iterations was a unit vec-
tor in the two-electron basis set, chosen such that the diagonal element of
helium Hamiltonian had the lowest value. In the case of HeH, the starting
point was a vector of the coefficients specifying the function A φAφB. The termi-
nation condition was that the norm of the residual vector had the value of
10–14 for helium calculations and 10–10 for dimer calculations.

The perturbation energies and wave functions were obtained by solving
the systems of linear equations resulting from converting the formulas of
the second and third Chapters of the paper into matrix form. These equa-
tions have the form Mx = b, where M is a diagonal block of the matrix of
the operator HA + HB – E(0) + P0, x is the vector of appropriate coefficients
defining a wave function correction, and b is the right-hand side vector
characteristic of a given SAPT theory. The preconditioned conjugate gradi-
ent method63 was used to solve all linear equations. This means that in-
stead of the equation Mx = b, an equivalent system of linear equations

(D –½ MD –½)(D½ x) = D –½ b (44)

was solved, where D is a diagonal matrix whose diagonal elements are the
same as in M. The Davidson and the conjugate gradient iterations require
an efficient implementation of the multiplication of the matrices of op-
erators H0, V, Vp, Vt, and A by a given vector. These multiplications were
implemented in such a way that the sparseness of matrices was fully exploited.
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RESULTS AND DISCUSSION

Results of FCI Calculations

The results of FCI calculations of the interaction energy in the 4Σ+ state of
HeH are presented in Table III, while Fig. 2 shows the FCI potential energy
curve obtained with our largest basis set. It is seen that this state has a very
shallow van der Waals minimum at the distance of approximately 12.5 bohr.
The depth De of this minimum amounts to only 18.6 µhartree (or 4.08 cm–1)
when the two largest bases are used. It is interesting to note that the mid-
bond functions are very effective at the minimum and at shorter distances.
In this range 22 midbond functions give more energy lowering than 45 dis-
persion optimized functions located at the atomic positions.
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TABLE III
The FCI interaction energy for lowest 4Σ+ state of HeH obtained using bases B61, B61+22b
and B106. The energy unit is 1 µhartree

R B61 B61+22b B106

10.0 63.60821 48.82623 49.90129

10.5 23.41081 12.66392 13.37579

11.0 1.34175 –6.38659 –5.98361

11.5 –9.78497 –15.30847 –15.11469

12.0 –14.54479 –18.48362 –18.41146

12.5 –15.77115 –18.58103 –18.57218

13.0 –15.16788 –17.17602 –17.19734

13.5 –13.72563 –15.16418 –15.19883

14.0 –11.99659 –13.02956 –13.06966

14.5 –10.27076 –11.01405 –11.05607

15.0 –8.68617 –9.22188 –9.26421

16.0 –6.10891 –6.38801 –6.42851

18.0 –3.02426 –3.10087 –3.13119

20.0 –1.57397 –1.59567 –1.61369

22.0 –0.86973 –0.87616 –0.88572

24.0 –0.50703 –0.50903 –0.51396

26.0 –0.30930 –0.30996 –0.31253

28.0 –0.19606 –0.19629 –0.19766



We found that this very shallow minimum does support bound rovibra-
tional levels (in nonrelativistic approximation). In fact all possible stable
isotopic varieties are bound and the heaviest ones support even a J = 1
rotationally excited level. This may be viewed as surprising since the
ground, X2Σ+ state of HeH, which exhibits somewhat deeper van der Waals
well, remains clearly unbound, even for the heaviest stable isotopes64. All 9
levels (neglecting the spin-orbit and spin-rotation splittings) found by us,
marked on Fig. 2 and listed in Table IV, lie very close to the dissociation
threshold. The highest one makes a remarkably long-range molecule. With
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FIG. 2
The supermolecular FCI interaction potential of the lowest 4Σ+ state of HeH and the bound
states supported by this potential for all possible isotopic varieties of HeH. The basis used in
calculations was B106
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TABLE IV
The energies of the bound levels. The employed potential was fitted to the FCI interaction
energies calculated with basis B106. The energy unit is 1 cm–1

J = 0 J = 1

3HeH –0.006958 –
4HeH –0.01871 –
3HeD –0.2044 –
4HeD –0.2764 –0.01538
3HeT –0.3671 –0.1014
4HeT –0.4770 –0.2191



an average interatomic distance of about 35 Å, this molecule is almost as
large as the helium dimer65,66. To our knowledge this is the first report of
bound levels for the lowest quartet of HeH (some higher excited quartet
states of HeH appear to be chemically bound67 and can be expected to sup-
port many rovibrational levels).

Convergence of Nonregularized SAPT Expansions

The results of the large-order SAPT calculations using non-regularized ex-
pansions are shown in Table V and in Fig. 3. The percentage errors listed in
Table V are defined as

δ( ) % ( ) / .n k

k

n

= × −
=
∑100

1

E E ESAPT
( )

FCI FCI (45)
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TABLE V
Percentage error δ(n), cf. Eq. (45), resulting from summing the nonregularized SAPT expan-
sions through the n-th order. The basis B61+22b was used and the interatomic distance was
12.5 bohr

n SRS ELHAV SAM JK

1 –202.13092 –202.13092 –202.13092 –202.13092

2 –9.00545 –83.21122 –83.21207 –9.00545

3 –14.20413 –35.85221 –35.85394 –5.11364

4 –9.75615 –15.91323 –15.91309 –2.70588

5 –8.74017 –7.22648 –7.22435 –1.41098

6 –7.15589 –3.34788 –3.34464 –0.73782

7 –6.08711 –1.58092 –1.57742 –0.38951

8 –5.10323 –0.76108 –0.75785 –0.20814

9 –4.31473 –0.37380 –0.37109 –0.11266

10 –3.64174 –0.18746 –0.18532 –0.06175

15 –1.60845 –0.00821 –0.00778 –0.00355

20 –0.75535 –0.00056 –0.00049 –0.00024

25 –0.44644 –0.00005 –0.00004 –0.00002

30 –0.65426 0.00000 0.00000 0.00000

35 –2.56462

40 –12.91990
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FIG. 3
Percentage of the FCI interaction energy recovered through the n-th order of the SRS (+),
ELHAV (×), SAM (�), and JK (�) theory. The basis B61+22b was used and the distance was 10.0
(a), 12.5 (b), 18.0 bohr (c)
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The perturbation calculations were carried out using the bases B61,
B61+22b, and B106 and we found only small differences in the conver-
gence rate when the basis set was improving. The general trend was that in
a larger bases the convergent methods (ELHAV, AM, JK) converged slightly
better, and the divergent methods (RS and SRS) diverged slightly worse. The
latter behavior can be rationalized since in larger basis sets the continuum
of the doublet permutational symmetry is described better and it is the in-
teraction with this continuum that causes the divergence of the RS and SRS
series.

The data from Table V and Fig. 3 show that, as expected, the SRS series di-
verges in high orders, while the ELHAV, SAM, and JK expansions are con-
vergent, despite the continuum of intruder states shown in Fig. 1. For the
ELHAV and JK expansions this observation is in agreement with the results
found in similar calculations31 for the LiH molecule. It is interesting to ob-
serve that the ELHAV and SAM expansions give practically identical results.
Similar observation was also recently made in ref.54 In low orders, the con-
vergence of the ELHAV and SAM expansions is very poor, especially at large
R. This is understandable in view of the well-known incorrect asymptotic
behavior of the second- and higher-order energies in these methods49,50.
We found that at large R the second-order ELHAV or SAM energies re-
produce only about 55% of the exact C6R –6 asymptotics of the interaction
energy (due entirely to the dispersion interaction in this case). The JK
method, in agreement with the results of ref.31, shows very good conver-
gence both in low and high orders. The good low-order convergence is ob-
viously due to the fact that 100% of the dispersion energy is recovered
through the second order. Figure 3 shows that at smaller interatomic dis-
tances the divergence of the SRS method manifests itself in lower orders.
The convergent methods converge also somewhat slower at smaller R, espe-
cially in low orders, but in large orders the convergence rate appears to be
almost independent of R.

Convergence of Regularized SAPT Expansions

The η dependence of the ground-state energy and of the ionization thresh-
old of the regularized Hamiltonian H0 + Vp(η) are plotted in Fig. 4 (we as-
sumed that ηA = ηB = η) for R = 12.5 bohr. This figure shows that for a wide
range of η (note the logarithmic scale on the η axis) the continuous spec-
trum of H0 + Vp(η) is moved far above the ground-state energy of H0 (equal
to –2.675 hartree). However, at η equal to a critical value ηc = 2.7 the
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ground-state wave function ψp(η) undergoes a qualitative change and looses
its similarity to the unperturbed function φ0. The corresponding eigenvalue
Ep(η) shows an abrupt downward bend at the same value of η. Thus, only
the values of η smaller than 2.7 can be used in the perturbation expansion
of the interaction energy. We found that the critical value of the regulariza-
tion parameter ηc depends very weakly on R and is close to 2.7 for the dis-
tances of the van der Waals well and larger. Asymptotically, at infinite R, ηc
can be easily computed from monomer properties only. We found that this
asymptotic value is equal to 2.7, i.e., is the same as for R = 12.5 bohr. It
should be mentioned that ηc does not show significant basis set depend-
ence. The value of ηc = 2.7 was obtained with all three bases used by us.

The possible infinite-order limit of the R-RS expansion (given by Eq. (31)
when A = 1 and λ = 1) and of the R-SRS expansion (given by Eq. (31) when
λ = 1), computed for different values of R assuming η = 2.5 are compared in
Table VI with the corresponding FCI interaction energies. The result of this
comparison is rather disappointing. For the considered system, the infinite-
order R-SRS theory cannot provide an acceptable approximation to the in-
teraction energy. Although, as shown in Fig. 5, the R-SRS series converges
very fast for η < ηc, its limit differs by about 15% from the exact interaction
energy at R = 12.5 bohr. This can be contrasted with the similar limit for
the interaction of two ground-state hydrogen atoms42, which differed by
less than 2% from the exact result at the van der Waals minimum distance
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FIG. 4
The ground state and the ionization threshold of the regularized Hamiltonian H(η) = H0 +
Vp(η) as a function of the parameter η. The dashed line represents the infinite-order R-SRS en-
ergy ER-SRS(1), cf. Eq. (31), which is undistinguishable at this energy scale from the FCI energy.
The basis B61 was used and the interatomic distance 12.5 bohr was assumed
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of 8 bohr. At larger distances, the infinite-order R-SRS energy becomes more
accurate since it has the same large-R asymptotics as the exact energy. How-
ever, the exponentially vanishing exchange contribution to the interaction
energy, which in this case can be defined as the difference between the FCI
and the infinite-order R-RS energies, is not too well reproduced at large R.
The numbers displayed in the last column of Table VI show that this
exchange contribution is reproduced with a relative error of about 10% at
the minimum and that this relative error decreases very slowly with R (it is
not clear from our data if this relative error vanishes when R increases to
infinity).

The above discussion shows that the singular part Vt of the perturbation
V cannot be neglected if the accuracy of a few percent or less is required.
The convergence of the R-SAM theory, the ZI theory of Adams, and the
SNC-P1 expansion, which include the effect of the Vt operator, is shown in
Table VII and in Fig. 6. It is seen that despite the singular nature of Vt, all
three expansions converge fast. This shows that the operator AVt is indeed a
much weaker perturbation than Vt itself. As Vt has a short-range character,
all perturbation energies in the regularized expansions considered in this
work have the correct asymptotic behavior, consistent with the theory of
Ahlrichs45. Somewhat disappointingly we do not see a significant advan-
tage the ZI theory of Adams might have over the simpler R-SAM treatment.
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FIG. 5
Percentage of the FCI interaction energy recovered through the n-th order of the SRS theory
(�) and the R-SRS theory with different values of the regularization parameter η: 0.4 (+), 1.0
(×), 2.5 (�), and 10.0 (�). The basis B61+22b was used and the distance was 12.5 bohr
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The plots presented in Fig. 6 show that the SNC-P1 approach provides re-
sults of practically the same accuracy as the R-SAM or ZI methods. This is
gratifying since the SNC-P1 regularization is computationally simplest (it
does not require any new integrals) and is independent of the somewhat ar-
bitrary choice of the regularization parameter η. It should be noted, how-
ever, that the SNC-P1 method cannot be generalized in an obvious way to
polyatomic dimers.

We also tested the role of the offset parameter D in the R-SAM theory. We
found that for the considered dimer and the range of interatomic distances
the R-SAM perturbation energies change insignificantly if this parameter is
set equal to zero. We decided to keep it to preserve the consistency with Adams’s
formulation43.
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TABLE VI
The infinite-order limits of the R-RS and the R-SRS theory as functions of the interatomic
distance R computed with basis B61+22b. The regularization parameter was fixed at η = 2.5.
The energy unit is 1 µhartree

R R-RS R-SRS FCI ∆a

10.0 –227.86949 92.50762 48.82623 15.79

10.5 –158.51431 37.52599 12.66392 14.52

11.0 –111.63110 7.77912 –6.38659 13.46

11.5 –79.64322 –7.23588 –15.30847 12.55

12.0 –57.60281 –13.88405 –18.48362 11.76

12.5 –42.25281 –15.96082 –18.58103 11.07

13.0 –31.43713 –15.68347 –17.17602 10.47

13.5 –23.72114 –14.31381 –15.16418 9.94

14.0 –18.14477 –12.54480 –13.02956 9.48

14.5 –14.06120 –10.73745 –11.01405 9.08

15.0 –11.03117 –9.06386 –9.22188 8.73

16.0 –7.02027 –6.33626 –6.38801 8.19

18.0 –3.17596 –3.09526 –3.10087 7.47

20.0 –1.60438 –1.59506 –1.59567 7.00

22.0 –0.87715 –0.87610 –0.87616 6.59

a Calculated using formula ∆ = 100% × |R-SRS – FCI|/|R-RS – FCI|.
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FIG. 6
Percentage of the FCI interaction energy recovered through the n-th order of the R-SAM (+), ZI
(×), and SNC-P1 (�) theory. In the R-SAM and ZI theories the regularization parameter was η =
1.0. The basis B61+22b was used and the distance was 10.0 (a), 12.5 (b), 18.0 bohr (c)
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Fig. 7
Comparison of the interaction energy recovered through the second order for different SAPT
theories with the FCI interaction energy as a function of the interatomic distance R. In the
R-SAM and ZI theories the regularization parameter was η = 1.0. The basis B61+22b was used in
calculations. FCI ( ), ELHAV (- · - · -), JK (– – – –), R-SAM (· · · ·), ZI (- - - -), and SNC-P1 (– · – · –)
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TABLE VII
Percentage error δ(n), cf. Eq. (45), resulting from summing the regularized SAPT expansions
through the n-th order. The basis B61+22b was used, the regularization parameter was η =
1.0, and the interatomic distance was 12.5 bohr

n R-SAM ZI SNC-P1

1 –202.13092 –203.94561 –202.13092

2 –2.87821 –4.19592 –3.52698

3 –8.83065 –9.96677 –9.20189

4 –2.69129 –3.85397 –3.48907

5 –2.59956 –3.29154 –3.06905

6 –1.14016 –1.79396 –1.69241

7 –0.89274 –1.28666 –1.24384

8 –0.45103 –0.78136 –0.77057

9 –0.32172 –0.53025 –0.53488

10 –0.17670 –0.33752 –0.34787

15 –0.01764 –0.04314 –0.04913

20 –0.00153 –0.00583 –0.00722

25 –0.00005 –0.00080 –0.00106

30 0.00003 –0.00010 –0.00014

35 0.00001 –0.00001 –0.00001

40 0.00000 0.00000 0.00000



In Fig. 7 we show how accurate approximation is obtained when the per-
turbation techniques discussed in this work are applied through the second
order. Except for the ELHAV (or SAM) theory all second-order approaches
provide qualitatively similar results. It is clear from this figure, however,
that to obtain a very high, spectroscopic accuracy, the effects of the third
and higher orders must be taken into account. In view of their demon-
strated convergence, the expansions considered in this work can be used to
systematically include these higher-order effects.

CONCLUSIONS AND OUTLOOK

The conclusions of our investigation can be summarized as follows:
– The coupling with the continuum of physical states of different permu-

tational symmetry leads to the divergence of the RS and SRS expansions for
the lowest quartet state of HeH.

– The conventional SAPT expansions based on forcing the proper symme-
try in the equations for the wave function (the ELHAV and JK expansions)
are convergent in this case, albeit the ELHAV expansion converges very
slowly in low orders due to an incorrect asymptotic behavior of the second-
and higher-order corrections.

– The original and symmetrized Amos–Musher expansions are convergent
in high orders. This confirms the hypothesis of Adams that the symme-
trized interaction operator AV is a much weaker perturbation than the oper-
ator V itself.

– The symmetrized version of the Amos–Musher theory leads to results
which are practically identical with those given by the ELHAV theory.

– The regularized SRS theory converges very fast but its infinite-order
limit does not represent a sufficiently good approximation to the interac-
tion energy.

– The regularized SRS theory can be corrected by including the short-
range, singular part of the perturbation. This can be achieved using the idea
of the symmetrized Amos–Musher theory. The resulting perturbation ex-
pansions involving the Gaussian, or a smeared nuclear charge regulariza-
tion exhibit very fast convergence and provide good results in low order.

One may ask, of course, if the conclusions we arrived at can be trans-
ferred to larger systems. We believe that the lowest quartet state of HeH,
unlike the two lowest states of H2 or the ground state of He2, is a system for
which all essential complications plaguing the SAPT treatment of many-
electron systems are present. Therefore, we expect that the main conclu-
sions of our investigation can transfer to larger systems. In fact, calculations
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performed for the interaction involving the ground-state lithium and hy-
drogen atoms (for this system the ground-state of the dimer is submerged
in a Pauli forbidden continuum) lead to similar conclusions54 and we be-
lieve that the converged SAPT expansions considered in the present work
and in ref.54 form a basis for a systematic extension of SAPT beyond the
conventional second order. Applications to larger systems would, of course,
require some approximate handling of the intramonomer correlation prob-
lem using, e.g., the ideas of the coupled cluster and/or many-body perturba-
tion theory. Work in this direction is in progress in our laboratory.
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erous support from the Foundation for Polish Science. This research was also partly supported by the
Polish Scientific Research Council (KBN) within the grant No. 4 T09A 071 22.

REFERENCES

1. Hobza P., Zahradník R.: Intermolecular Complexes. Elsevier, Amsterdam 1988.
2. Chalasinski G., Szczesniak M. M.: Chem. Rev. 1994, 94, 1723.
3. van Duijneveldt F. B., van Duijneveldt-van de Rijdt J. G. C. M., van Lenthe J. H.: Chem.
Rev. 1994, 94, 1873.

4. Chalasinski G., Szczesniak M. M.: Chem. Rev. 2000, 100, 4247.
5. Arrighini G. P.: Intermolecular Forces and Their Evaluation by Perturbation Theory. Springer,
Berlin 1981.

6. Jeziorski B., Szalewicz K. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer,
N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III and P. R. Schreiner,
Eds), Vol. 2, p. 1376. Wiley, Chichester 1998.

7. Jeziorski B., Szalewicz K. in: Handbook of Molecular Physics and Quantum Chemistry
(S. Wilson, Ed.), Vol. 3, p. 232. Wiley, Chichester 2003.

8. Kaplan I. G.: Theory of Molecular Interactions. Elsevier, Amsterdam 1986.
9. Stone A. J.: The Theory of Intermolecular Forces. Clarendon, Oxford 1996.
10. Burda J. V., Zahradník R., Hobza P., Urban M.: Mol. Phys. 1996, 89, 425.
11. Jeziorska M., Bukowski R., Cencek W., Jaszunski M., Jeziorski B., Szalewicz K.: Collect.

Czech. Chem. Commun. 2003, 68, 463.
12. Perez-Jorda J. M., Becke A. D.: Chem. Phys. Lett. 1994, 223, 134.
13. Bartlett R. J.: J. Phys. Chem. 1989, 93, 1697.
14. Longuet-Higgins H. C.: Discuss. Faraday Soc. 1965, 40, 7.
15. Hobza P., Zahradník R.: Collect. Czech. Chem. Commun. 1976, 41, 1111.
16. Buckingham A. D., Fowler P. W., Hutson J. M.: Chem. Rev. 1988, 88, 963.
17. Dykstra C. E.: Chem. Rev. 1993, 93, 2339.
18. Jeziorski B., Moszynski R., Szalewicz K.: Chem. Rev. 1994, 94, 1887.
19. Adams W. H.: Int. J. Quantum Chem., Quantum Chem. Symp. 1990, S24, 531.

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

174 Przybytek, Patkowski, Jeziorski:

http://dx.doi.org/10.1021/cr990048z
http://dx.doi.org/10.1080/002689796173804
http://dx.doi.org/10.1135/cccc20030463
http://dx.doi.org/10.1135/cccc20030463
http://dx.doi.org/10.1039/df9654000007
http://dx.doi.org/10.1002/qua.560382452
http://dx.doi.org/10.1021/cr00031a008
http://dx.doi.org/10.1021/cr00023a001
http://dx.doi.org/10.1021/cr00088a008
http://dx.doi.org/10.1021/j100342a008
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1021/cr00031a001


20. Adams W. H.: Int. J. Quantum Chem., Quantum Chem. Symp. 1991, S25, 165.
21. Adams W. H.: Chem. Phys. Lett. 1994, 229, 472.
22. Adams W. H.: Int. J. Quantum Chem. 1996, 60, 279.
23. Adams W. H.: Int. J. Quantum Chem. 1999, 72, 393.
24. Chalasinski G., Szczesniak M. M.: Mol. Phys. 1988, 63, 205.
25. Jeziorski B., Kolos W.: Int. J. Quantum Chem. 1977, 12(Suppl. 1), 91.
26. Kutzelnigg W.: J. Chem. Phys. 1980, 73, 343.
27. Jeziorski B., Kolos W. in: Molecular Interactions (H. Ratajczak and W. J. Orville-Thomas,

Eds), p. 1. Wiley, New York 1982.
28. Jeziorski B., Szalewicz K., Chalasinski G.: Int. J. Quantum Chem. 1978, 14, 271.
29. Bukowski R., Cencek W., Jankowski P., Jeziorska M., Jeziorski B., Kucharski S. A.,

Misquitta A. J., Moszynski R., Patkowski K., Rybak S., Szalewicz K., Williams H. L.,
Wormer P. E. S.: SAPT2002, An ab initio Program for Many-Body Symmetry-Adapted
Perturbation Theory Calculations of Intermolecular Interaction Energies. University of
Delaware and University of Warsaw 2002.

30. Patkowski K., Korona T., Jeziorski B.: J. Chem. Phys. 2001, 115, 1137.
31. Patkowski K., Jeziorski B., Korona T., Szalewicz K.: J. Chem. Phys. 2002, 117, 5124.
32. van Hemert M. C., van der Avoird A.: J. Chem. Phys. 1979, 71, 5310.
33. Chalasinski G., Szalewicz K.: Int. J. Quantum Chem. 1980, 18, 1071.
34. Eisenschitz R., London F.: Z. Phys. 1930, 60, 491.
35. Hirschfelder J. O.: Chem. Phys. Lett. 1967, 1, 363.
36. van der Avoird A.: J. Chem. Phys. 1967, 47, 3649.
37. Murrell J. N., Shaw G.: J. Chem. Phys. 1967, 46, 46.
38. Musher J. I., Amos A. T.: Phys. Rev. 1967, 164, 31.
39. Korona T., Jeziorski B. Moszynski R., Diercksen G. H. F.: Theor. Chem. Accounts 1999,

101, 282.
40. Movre M., Meyer W.: J. Chem. Phys. 1997, 106, 7139.
41. Amos A. T., Musher J. I.: Chem. Phys. Lett. 1969, 3, 721.
42. Patkowski K., Jeziorski B., Szalewicz K.: J. Mol. Struct. (THEOCHEM) 2001, 547, 293.
43. Adams W. H.: Theor. Chem. Acc. 2002, 108, 225.
44. Korona T., Moszynski R., Jeziorski B.: Adv. Quantum Chem. 1997, 28, 171.
45. Ahlrichs R.: Theor. Chim. Acta 1976, 41, 7.
46. Peierls R.: Proc. R. Soc. London, Ser. A 1973, 333, 157.
47. Bloch C.: Nucl. Phys. 1958, 6, 329.
48. Jeziorski B., Szalewicz K., Jaszunski M.: Chem. Phys. Lett. 1979, 61, 391.
49. Chipman D. M., Hirschfelder J. O.: J. Chem. Phys. 1973, 59, 2830.
50. Kutzelnigg W.: Int. J. Quantum Chem. 1978, 14, 101.
51. Adams W. H.: Presented at the American Conference on Theoretical Chemistry, Park City,

Utah, July 1996.
52. Sirbu I., King H. F.: J. Chem. Phys. 2002, 117, 6411.
53. Herring C.: Rev. Mod. Phys. 1962, 34, 631.
54. Patkowski K., et al.: Unpublished results.
55. Partridge H., Bauschlicher C. W.: Mol. Phys. 1999, 96, 705.
56. Haywood S., Morgan III J. D.: Unpublished; quoted in: Morgan III J. D. in: Numerical

Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules
(M. Defrancesi and J. Delhalle, Eds). Kluwer, Dordrecht 1989.

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

Symmetry-Adapted Perturbation Expansions 175

http://dx.doi.org/10.1016/0009-2614(94)01107-9
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:4<393::AID-QUA23>3.3.CO;2-I
http://dx.doi.org/10.1063/1.439880
http://dx.doi.org/10.1063/1.1379330
http://dx.doi.org/10.1063/1.1499488
http://dx.doi.org/10.1063/1.438344
http://dx.doi.org/10.1016/0009-2614(67)80036-8
http://dx.doi.org/10.1103/PhysRev.164.31
http://dx.doi.org/10.1007/s002140050442
http://dx.doi.org/10.1007/s002140050442
http://dx.doi.org/10.1063/1.473735
http://dx.doi.org/10.1016/0009-2614(69)87020-X
http://dx.doi.org/10.1016/S0166-1280(01)00478-X
http://dx.doi.org/10.1007/s00214-002-0377-3
http://dx.doi.org/10.1016/0029-5582(58)90116-0
http://dx.doi.org/10.1016/0009-2614(79)80670-3
http://dx.doi.org/10.1063/1.1506915
http://dx.doi.org/10.1103/RevModPhys.34.631
http://dx.doi.org/10.1080/002689799165558
http://dx.doi.org/10.1063/1.1680415
http://dx.doi.org/10.1002/qua.560400819
http://dx.doi.org/10.1002/qua.560180414
http://dx.doi.org/10.1063/1.1712436
http://dx.doi.org/10.1063/1.1840933
http://dx.doi.org/10.1002/qua.560140110
http://dx.doi.org/10.1002/qua.560140306


57. Marinescu M., Sadeghopur H. R., Dalgarno A.: Phys. Rev. A: At., Mol., Opt. Phys. 1994, 49,
982.

58. Saunders V. R., Guest M. F.: ATMOL Program Package. SERC Daresbury Laboratory,
Daresbury (U.K.) 1986, with modifications by Wormer P. E. S., University of Nijmegen,
Nijmegen (The Netherlands) 1996.

59. Spelsberg D., Meyer W.: J. Chem. Phys. 1993, 99, 8351.
60. Brink D. M., Satchler G. R.: Angular Momentum. Clarendon, Oxford 1975.
61. Davidson E. R.: J. Comput. Phys. 1975, 17, 87.
62. Duch W.: DAVIDSON, Program for Finding Several Lowest Eigensolutions of Symmetric

Real Matrix. University of Torun, Torun (Poland) 1990.
63. Barrett R., Berry M., Chan T. F., Demmel J., Donato J. M., Dongarra J., Eijkhout V., Pozo R.,

Romine C., van der Vorst H.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia 1994.

64. Murrell J. N., Wright T. G., Bosanac S. D.: J. Mol. Struct. (THEOCHEM) 2002, 591, 1.
65. Luo F., Giese C. F., Gentry W. R.: J. Chem. Phys. 1996, 104, 1151.
66. Grisenti R. E., Schollkopf W., Toennies J. P., Hegerfeldt G. C., Kohler T., Stoll M.: Phys.

Rev. Lett. 2000, 85, 2287.
67. Manby F. R., Dogget G., Fletcher G. D.: J. Mol. Struct. (THEOCHEM) 1995, 343, 63.

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

176 Przybytek, Patkowski, Jeziorski:

http://dx.doi.org/10.1103/PhysRevA.49.982
http://dx.doi.org/10.1103/PhysRevA.49.982
http://dx.doi.org/10.1063/1.465610
http://dx.doi.org/10.1016/S0166-1280(02)00205-1
http://dx.doi.org/10.1063/1.470771
http://dx.doi.org/10.1103/PhysRevLett.85.2284
http://dx.doi.org/10.1103/PhysRevLett.85.2284
http://dx.doi.org/10.1016/0166-1280(95)90527-8
http://dx.doi.org/10.1016/0021-9991(75)90065-0

